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A double-gyroid nanostructure is a two-component heterostructure that is three-dimensionally periodic, with
one material forming a continuous wall-like region of nearly constant thickness centered on the zero-mean
curvature G surface. The other material forms two individually continuous channel-like regions. Semiconduc-
tor nanostructures with this topology may now be fabricated, and we present here the first calculation of the
electronic structure of such materials. We use the simplest two-band envelope function method that can yield
information on the nature of quantum confinement effects. We report the density of states and wave functions
for the case of PbSe and show that when PbSe fills the channel-like region, the resulting double-gyroid PbSe
nanowire network displays quantum confinement effects with a blueshifted band gap of 0.50 eV (1.77 times the
bulk PbSe band gap of 0.28 eV). In addition, the low-energy density of states (DOS) contains a series of peaks
separated by gaps; we attribute the enhancement of the DOS in the peaks to a weak dependence of energy on
the quasimomentum. Thus, we suggest that these structures may have some similarity with zero-dimensional or
one-dimensional materials in regard to their photophysics, yet may have more similarity to three-dimensional
materials with regard to their transport properties. As a result, they may be of aid in harnessing nonlinear
optical effects, such as carrier multiplication phenomena, for high-efficiency photovoltaic or photoelectro-

chemical devices.
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I. INTRODUCTION

The phenomenon of “multiple exciton generation” (MEG)
or “carrier multiplication” (CM) has been observed experi-
mentally'? in semiconducting quantum dots with high effi-
ciency using photons of visible wavelengths. This makes
these systems potentially promising photoabsorbers in next
generation photovoltaic or photoelectrochemical cells. How-
ever, harvesting the “extra” photogenerated electrons and
holes from zero-dimensional (0D) quantum dots to yield a
higher photocurrent is difficult and has yet to be shown ex-
perimentally. For a recent review of efforts to utilize quan-
tum dots in solar cells see Ref. 3. In that critique a challenge
was articulated to develop materials and devices that behave
similar to OD quantum confined objects in regards to their
photophysics but behave more similar to 3D objects in re-
gards to their electronic transport. One approach to this chal-
lenge is to assemble quantum dots into a three-dimensional
(3D) array such that charge carriers can be extracted via
tunneling between the dots. Another, which we consider
here, is to use unique semiconductor nanostructures that are
composed, effectively, of short one-dimensional (1D) nano-
rods that branch periodically so as to create a periodic 3D
material composed of small aspect ratio cylindrical seg-
ments. This may provide a route to utilize 0D or 1D quantum
phenomena in the photoexcitation process and still extract
the enhanced photocurrent in a next generation solar cell.

The precise conditions for MEG to occur are at present
not completely understood and are a topic of recent debate.*>
However, we expect that, regardless of the precise mecha-
nism, the electronic density of states (DOS) is important in
determining the probability of MEG. Indeed, an enhance-
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ment of the DOS aids single-exciton production, as the prob-
ability is directly proportional to the DOS. We expect it to
play an even greater role in nonlinear effects (by which we
mean effects involving a coupling between single-exciton
and multiexciton states), where within perturbation theory
there is a factor of DOS corresponding to each of the pro-
duced carriers.

Due to the presence of the branch points, the individual
wire segments have finite lengths, which suggests that they
may behave more like a collection of weakly coupled quan-
tum dots or quantum rods, as opposed to an infinite length
homogeneous quantum wire. Consider, for example, a wire-
like structure formed by a weakly coupled periodic chain of
resonance cavities. Within the tight-binding approximation,
the spectrum of waves in such a wire has the form E(g)
—E(0) e 1—cos ¢, where ¢ is the quasimomentum. The DOS
exhibits characteristic “horns” at g=0, .

The question we address here is whether this enhance-
ment mechanism may exist in new semiconductor nanostruc-
tures that may now be fabricated. Recently, Urade et al.’
reported the fabrication of continuous nanoporous silica thin
films with the double-gyroid (DG) structure (see Fig. 1) and
demonstrated their use in a template-replication nanofabrica-
tion technique by filling the pores with a metal and removing
the original silica nanostructure. The result is a three-
dimensionally periodic array of two interpenetrating metallic
nanowire networks with a unit cell of approximately 18 nm.
Each nanowire network can be viewed as a collection of
nanowire segments (approximately cylindrical nanorods that
are roughly 4 nm in diameter and 10 nm in length) joined at
“y junctions” [Fig. 1(c)]. These junctions are oriented in
space such that the nanostructure is three-dimensionally pe-
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FIG. 1. (Color online) The double-gyroid structure with cubic symmetry (space group la3d) and lattice constant a=17.9 nm. Each panel
shows a region that is 1.5a to better illustrate the periodicity. (a) The G surface within the level-surface approximation of Ref. 7 (contour
level 0). This surface defines two separate nonintersecting pore systems. (b) The double-gyroid structure that results when the infinitely thin
G surface is replaced by a finite-thickness wall defined by contour levels —0.8 and 0.8. (c) One of the nanowire networks that result from
filling the pores of the double-gyroid structure. (d) Both of the interpenetrating, but nonintersecting, nanowire networks.

riodic with cubic Ia3d symmetry, giving a 3D character to
the collection of nanowire segments. One can envision simi-
lar structures where the nanowire network is a semiconduc-
tor, rather than a metal, and the silica wall is either left in
place or removed. Such materials could potentially be used
to address the 0D photophysics—3D transport challenge dis-
cussed above and could potentially yield solar energy con-
version devices that utilize MEG.

In these semiconductor nanostructures, either the junc-
tions or the nanorods could in principle function as weakly
coupled resonance cavities. Our goal was to find out if inter-
ference of electron waves in a double-gyroid nanostructured
semiconductor is strong enough for either of those regions to
actually behave in that way. We have chosen PbSe as the
semiconductor to be used for the simulations since MEG has
been observed in PbSe quantum dots."? In addition, the near
equality of the electron and hole effective masses in this
material suggests that the DOS may be studied using an ap-
proximation involving relatively few parameters. Our strat-

egy has been to extract these parameters by fitting the ex-
perimentally measured absorption spectra of the spherical
PbSe quantum dots’> and then use the extracted values to
numerically compute the spectrum of DG.

Here, we present results on the DOS and the shape of
wave functions of semiconductor DG nanostructures. These
results were obtained by numerically solving the scalar wave
equation

[ V2 + E5(r)J(r) = E*y(r), (1)

where Ey(r) is half of the bulk band gap, which has different
values in different spatial regions, and E? are the eigenvalues
to be determined. Equation (1) is the simplest one containing
two effects of main interest to us in the present study: the
presence of a band gap and (via the V? term) of spatial dis-
persion. It can be viewed as a two-band (conduction and
valence) version of the isotropic envelope approximation, of-
ten used in description of lead salt quantum dots.® Thus, a
state with £>0 describes an electron, and a state with E
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FIG. 2. (Color online) Hot spots in a double gyroid. Isosurfaces
of the probability densities for states with ¢=0, n=19 (left panel)
and g=(m/a,0,0), n=18 (right panel). The “beads” are color coded
to reflect the signs of the wave functions. The transparent white
surface is an isosurface of the probability density in the ground state
of the channel and is used to indicate the channel’s location.

<0 a hole. Since the spectrum is symmetric with respect to
E=0, in what follows we concentrate on the electron states.
Extension to the full four-band formalism of Kang and Wise®
would significantly increase the size of the numerical prob-
lem and has been deferred to future work.

A spherical PbSe quantum dot with Dirichlet boundary
conditions at r=R corresponds to Ey(r<R)=0.14 eV and
Ey(r>R)=cc. In that case, Eq. (1) can be solved analytically.
By fitting the dot absorption spectra, we find ¢
=0.28 eV nm.

For a DG nanostructure, we assign different values of
Ey(r) to the materials in the wall and in the channels. We
keep the same form of the equation (and indeed, here, the
same value of ¢) for regions with both low and high band
gaps. We expect this to be a good approximation whenever
the ratio of the band gaps is sufficiently large to effectively
confine the carriers to the low-band-gap region. As far as we
know, this problem does not have an analytic solution. In
addition to the case when a low-band-gap semiconductor fills
the double-gyroid channels [hereafter referred to as the DG-
wire case and shown in Fig. 1(d)], we have considered the
inverted case, in which the semiconductor composes the wall
itself. This geometry is the DG topology version of a two-
dimensional quantum well and is hereafter referred to as the
DG-well case [shown in Fig. 1(b)]. For this case, the assign-
ment of the values of E, to the wall and channels has been
reversed.

We have found that, in the DG-wire case, the low-energy
DOS contains a series of peaks separated by gaps. Due to the
high symmetry of the double-gyroid structure, some level
degeneracies are present, but the peaks survive even after
these degeneracies have been removed. A particularly large
enhancement of DOS occurs for a group of states in which
the wave functions are supported mostly in the cylindrical
segments (see Fig. 2). This enhancement can be traced to an
exceptionally weak dependence of energy on the quasimo-
mentum.

The DG-well case bears some similarity to the case where
a metal is confined to an (infinitely thin) gyroid surface,
which was considered by Koshino and Aoki’ (see also Ref.
10). These authors have identified several peaks in the DOS
and related them to the symmetries of the gyroid surface.
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Here, we consider a finite-thickness semiconductor, rather
than an infinitely thin metal. Moreover, our numerical
method is designed for three-dimensional calculations—it
samples the volume rather than a surface, so the limit of an
infinitely thin wall is not accessible. Still, one expects that
symmetry-related considerations should not be overly sensi-
tive to the wall thickness, and indeed the level degeneracies
reported for the infinitely thin metal® are readily identified in
our data. Upon removal of the degeneracies, the DOS in the
DG-well case does not exhibit any peaks of strength compa-
rable to that in the DG-wire case. This is consistent with the
finding of Koshino and Aoki® that the DOS can be smoothed
out by adding a symmetry-breaking potential.

II. COMPUTATIONAL METHOD

We now turn to a more detailed description of our com-
putations and results. The double-gyroid is a body-center cu-

bic (bce) structure with space group la3d. The fabricated
double-gyroid nanostructure thin films deviate from perfect
cubic symmetry, as they contract more in one direction (per-
pendicular to the substrate) than in the other two.® For an
initial theoretical study, however, it is natural to start from
the system with maximal symmetry. So, here, we present
results for an uncontracted double-gyroid with cubic lattice
constant a=17.9 nm. We have verified that, while the asym-
metric contraction smears out the DOS in the DG-wire case,
pronounced peaks remain.

Computationally, it is sufficient to consider a single unit
cell. Given that the conventional double-gyroid unit cell is
bee, the corresponding primitive unit cell is thombohedral
and is formed by vectors drawn from the corner of the bcc
cell to the body centers of three adjacent bce cells. On the
other hand, mathematical description of the DG structure and
imposing the boundary conditions are simplified if one uses a
cube with dimensions of a single bcc unit cell. Here, we
adapt the latter approach, even though it is less computation-
ally efficient since the cubic unit cell that we simulate has
twice the volume of the primitive rhombohedral cell. Ac-
cordingly, the first Brillouin zone (BZ) spanned by quasimo-
menta ¢ of Eq. (2) is a simple-cubic BZ, with half the vol-
ume (in the reciprocal space) of the BZ that results from
using the primitive unit cell. We discuss the relation between
the two Brillouin zones in more detail later. (Let us stress
that the BZ we are talking about is the BZ of the double-
gyroid nanostructure, not that of the underlying PbSe crys-
tal.) Thus, the periodic boundary conditions are imposed at
the surface of the unit cube and have the form

Yr+a)=eY(r), (2

where a is a lattice translation and g=(g,,qy,q) is a quasi-
momentum.

In order to specify the values of Ey(r) in the unit cell, a
mathematical description of the double-gyroid is needed.
While the gyroid surface is exactly represented by a
Weierstrass-Enneper representation, the double-gyroid struc-
ture, where the wall has finite thickness, is more conve-
niently (and very accurately) represented by a level-surface
approximation.” Namely, the two wall-channel interfaces are
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approximated by the equations F(r)= = w, where
F(x,y,z) = sin(2mx/a)cos(2my/a) + sin(2ay/a)cos(27wz/a)
+ sin(27z/a)cos(2mx/a),

and 0=w=12isa parameter determining the wall thickness
(w=0 corresponding to an infinitely thin wall). The results
below are for w=0.8, when the thickness of the wall and the
transverse size of the channels are comparable.

For the parameters appearing in Eq. (1), we have used ¢
=0.28 eV nm and, in the DG-wire case,

Ey(r) = {El’ |[F(r)] >w (channels)

E,, |F(r)|<w (wall), 3)

with the low energy E;=0.14 eV (half of the bulk band gap
of PbSe) and the high energy E,=~5.2 eV. In the DG-well
case, the energy assignments have been reversed. The large
difference between E; and E;, means that, as far as the low-
energy spectrum is concerned, the wave function is confined
to either the channels (the DG-wire case) or the wall (the
DG-well case), with essentially zero boundary conditions at
the interfaces.

In what follows, we often use dimensionless units in
which energies are reported in units of half the bulk band gap
of the semiconductor (E;) and lengths in units of ¢/E,. Thus,
for the aforementioned values of the parameters, the unit of
length equals 2 nm.

We have discretized Eq. (1) with the boundary condition
(2) on a uniform spatial lattice and diagonalized the resulting
matrix numerically using a general purpose routine.!' Here,
we present results from a 20 lattice; the corresponding ma-
trix problem thus involves a 8000 X 8000 unitary matrix for
each value of g. By comparing the results to those from a 163
lattice, we have confirmed that there is enough spatial reso-
lution to accurately reproduce the low-energy spectrum, on
which our conclusions are based.

For each ¢, the spectrum typically contains well-defined
groups of degenerate states. These degeneracies may en-
hance the density of states at certain values of the energy.
Such an enhancement is of interest in its own right but is not
directly related to the strength of the coupling between
neighboring cells of the three-dimensional material (i.e., the
question of the existence of “hot spots,” which we primarily
wish to explore). Therefore, in addition to the full DOS, we
construct the quantity we call the reduced DOS (RDOS), in
which the degeneracies have been removed. This is done by
counting all states corresponding to the same ¢ and separated
in energy by less than e=107*E, as one state. An enhance-
ment in the RDOS will be due to similarity of energies cor-
responding to different values of the quasimomentum and
thus a reflection of weak coupling between the segments or
junctions.

III. RESULTS

We begin with the DG-wire case (semiconductor filling
the channels). In Fig. 3, we show both the RDOS and the
full DOS. In this case, their overall shapes are quite simi-
lar. In particular, moderately excited states (0.29 eV<E
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FIG. 3. Histograms of the reduced and full densities of single-
particle (electron or hole) states for the case when PbSe (with bulk
band gap of 0.28 eV) fills the channels of the double gyroid.

=0.40 eV) form a number of sharp peaks separated by gaps.
We also note that the band gap is quite blueshifted (equal to
1.77 times the bulk band gap)—a consequence of quantum
confinement in the channels.

We interpret these peaks (enhanced RDOS) as a sign of
weak coupling between neighboring unit cells. To confirm
this interpretation, we have considered the nature of the wave
functions corresponding to the peak at E=0.3 eV. In Fig. 2,
we show isosurfaces of the probability densities of state
number n=19 at ¢=0 and state number n=18 at ¢
=(m/a,0,0)."? (The difference in the quantum number is in-
essential since each state is a member of a degenerate group
of four with n ranging from 16 to 19.) Each isosurface is
seen to be a collection of “beads” residing at the cylindrical
segments that connect the y junctions. Either state is sup-
ported primarily in one of the two complementary nanowire
networks.

One readily identifies common elements of the two wave
functions in Fig. 2. The main difference between the two is
that in the g=0 state the sign of the wave function (repre-
sented by the color of the beads) always alternates between
neighboring beads. In the ¢ #0 state, the 7 twist in the x
direction (which runs horizontally in the figure) pushes beads
of the same color together, to form a single antinode. The
energy difference between the two states (i.e., the bandwidth
for waves propagating in the x direction), however, is small:
E(m/a)-E(0)=1.7X107E;=0.23 meV.

The profile of the wave function along the x direction in
the presence of a 7 twist (a single antinode in the middle and
vanishing wave function at the ends) suggests that a relevant
“control” for comparison is a straight wire with band gap
equal to the value of E(0) above [E(0)=0.3 eV] and wave
function twisted by 7 (antiperiodic boundary conditions)
over a length L=10=20 nm. The twist supplies wave num-
ber 7/L and energy

2

E(mL) = EO) = 55

=3.2 meV, (4)

which is more than an order of magnitude larger than the
energy difference between the states of Fig. 2. This quantifies
how weakly coupled the neighboring cells of the double gy-
roid are.

The use of twisted boundary conditions to make conclu-
sions about coupling between spatially separated regions is
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somewhat reminiscent of the Edwards-Thouless'? approach
to electron localization. The main difference, of course, is
that we are not dealing with disorder; so our wave functions
are still delocalized (Bloch) states. In view of the concordant
use of boundary conditions, however, we will refer to delo-
calized states with exceptionally weak dependence of energy
on the quasimomentum as quasilocalized.

We should remark, though, that the evidence for weak
coupling presented above has been obtained only for rela-
tively high excited states (n=16,...,19 in the above ex-
ample) and does not extend to the lowest-energy states form-
ing the broad peak around E=0.26 eV (see Fig. 3). We now
briefly discuss the nature of those states.

Because of the large band gap in the wall, the excitations
practically do not tunnel between the channels, so there are
two degenerate ground states, one per channel. (One of these
ground states is shown by the transparent white surface in
Fig. 2.) The lowest-excited states at g=0 form a degenerate
group of six and are supported primarily in the y junctions.
The energy difference between these states and the corre-
sponding group (of four states) at g=(m/a,0,0) is 0.018E,.
This is only marginally smaller than the energy separation
(4) in the straight wire. Hence, we find no evidence of 0D
behavior for states with E<2E,.

Next, we turn to the case where the wall is the low-band-
gap semiconductor and the channels are filled with an insu-
lator (DG-well case). Here, we expect to find some corre-
spondence with the results of Ref. 9 (for a metal on a gyroid
surface). In Ref. 9, the band structure was mapped onto the
BZ of a body-centered structure as described by a rhombo-
hedral primitive unit cell (referred to here as the body-
centered BZ). However, our boundary conditions (2) imply
the BZ of a simple-cubic structure with the dimensions of the
original body-centered unit cell, and we refer to that BZ as
the simple-cubic BZ. The body-centered BZ has twice the
volume of the simple-cubic BZ. Hence, states corresponding
to quasimomenta not present in the simple-cubic BZ are
aliased there, producing additional bands. For instance, the H
point'# of the body-centered BZ maps into the zone center (I’
point) of the simple-cubic BZ, so the sixfold degeneracy at
the H point found in Ref. 9 should show up as a group of six
states at g=0, above the ground state. These states are
readily identified in our data. The P point of the body-
centered BZ maps to the corner of the simple-cubic BZ, i.e.,
to g=(m/a,m/a,m/a). Reference 9 reports fourfold degen-
eracies for states at the P point. There are two inequivalent P
points in the body-centered BZ but only one corner in the
simple-cubic one. So, we may expect that, in our case, states
at the BZ corner should come in groups of eight, and indeed
they do.

The DOS and RDOS for the DG-well case are shown in
Fig. 4. We see that the low-energy DOS is comparatively
smooth and becomes even more so upon the removal of the
degeneracies. Comparison of energies for different values of
q confirms that tight-binding effects, if any, are much weaker
than in the DG-wire case.

IV. CONCLUSION

To summarize, we have presented numerical evidence that
scalar waves described by Eq. (1) undergo enough interfer-
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FIG. 4. Same as in Fig. 3 but for the case when PbSe fills the
wall.

ence in double-gyroid semiconductor nanowire arrays to
form “hot spots”—regions of localized excitation relatively
weakly coupled to each other. The effect is especially strong
for a group of excited states whose wave functions are sup-
ported primarily in the cylindrical segments connecting the y
junctions (see Fig. 2).

On the other hand, the wave function corresponding to the
band edge (the ground state) of a DG wire is completely
delocalized. This suggests one way how photophysics may
be separated from transport: carriers will be produced in the
“hot spots,” relax to the band edge, and then be transported
away. Such dynamics would go a long way toward realizing
materials that are low dimensional in regard to their photo-
physics but three dimensional in regard to transport. Note
that this scenario is quite different from what one expects for
an array of quantum dots. If the QD array is a hexagonal
close packing of QDs, then each QD has 12 nearest neigh-
bors. Once the QDs are close enough to each other for the
ground-state wave function to be completely delocalized, the
material will likely behave like a bulk material in all re-
spects.

The linear Eq. (1) does not include any interactions
among the carriers and so does not allow one to directly
assess the probability of carrier multiplication in a DG
wire. We can, however, use an indirect method, based
on estimating the time scale of charge transport between
the “hot spots.” The bandwidth of 0.2 meV found above
corresponds to transport time of a few picoseconds. This
seems long enough for MEG in the cylindrical segments to
take place essentially in the same way as it does in quantum
dots (where, according to Ref. 15, it proceeds at the
subpicosecond scale). Thus, we suggest that the blueshift
in the band gap, the enhanced density of states, and the
existence of quasilocalized wave functions in semiconduct-
ing wires based on double-gyroid nanostructures may make
them of use for MEG based solar cells and other optical
processes where interactions between single-exciton and
multiexciton states are important. However, since at present
there is no agreed upon theory of MEG, even in the well-
studied case of PbSe quantum dots, evaluation of this possi-
bility will require further theoretical, as well as experimental,
efforts. In particular, we believe that ultrafast spectroscopy
experiments in the form of transient absorption or time-
resolved photoluminescence would be particularly informa-
tive.
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